A superfast solver for real symmetric Toeplitz systems using real trigonometric transformations

نویسندگان

  • Gianni Codevico
  • Georg Heinig
  • Marc Van Barel
چکیده

A new superfast O(n log n) complexity direct solver for real symmetric Toeplitz systems is presented. The algorithm is based on 1. the reduction to symmetric right-hand sides, 2. a polynomial interpretation in terms of Chebyshev polynomials, 3. an inversion formula involving real trigonometric transformations, and 4. an interpretation of the equations as a tangential interpolation problem. The tangential interpolation problem is solved via a divide-and-conquer strategy and fast DCT.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Superfast Algorithm for Toeplitz Systems of Linear Equations

In this paper we develop a new superfast solver for Toeplitz systems of linear equations. To solve Toeplitz systems many people use displacement equation methods. With displacement structures, Toeplitz matrices can be transformed into Cauchy-like matrices using the FFT or other trigonometric transformations. These Cauchy-like matrices have a special property, that is, their off-diagonal blocks ...

متن کامل

Transformation Techniques for Toeplitz and Toeplitz-plus-Hankel Matrices. I. Transformations

Transformations of the form A + E’FAg2 are investigated that transform Toeplitz and Toeplitz-plus-Hankel matrices into generalized Cauchy matrices. ‘Zi and @a are matrices related to the discrete Fourier transformation or to various real trigonometric transformations. Combining these results with pivoting techniques, in paper II algorithms for Toeplitz and Toeplitz-plus-Hankel systems will be p...

متن کامل

Transformation Techniques for Toeplitz and Toeplitz-plus-hankel Matrices Part I. Transformations

Transformations of the form A ! C 1 AC 2 are investigated that transform Toeplitz and Toeplitz-plus-Hankel matrices into generalized Cauchy matrices. C 1 and C 2 are matrices related to the discrete Fourier transformation or to various real trigonometric transformations. Combining these results with pivoting techniques,in part II algorithmsfor Toeplitz and Toeplitz-plus-Hankel systems will be p...

متن کامل

Superfast Solution of Real Positive Definite Toeplitz Systems

Abstract. We describe an implementation of the generalized Schur algorithm for the superfast solution of real positive definite Toeplitz systems of order n + 1, where n = 2ν . Our implementation uses the split-radix fast Fourier transform algorithms for real data of Duhamel. We are able to obtain the nth Szegő polynomial using fewer than 8n log 2 n real arithmetic operations without explicit us...

متن کامل

The Generalized Schur Algorithm for the Superfast Solution of Toeplitz Systems

We review the connections between fast, O(n), Toeplitz solvers and the classical theory of Szegő polynomials and Schur’s algorithm. We then give a concise classically motivated presentation of the superfast, O(n log 2 n), Toeplitz solver that has recently been introduced independently by deHoog and Musicus. In particular, we describe this algorithm in terms of a generalization of Schur’s classi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Numerical Lin. Alg. with Applic.

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2005